2023年11月24日发(作者:)

对风冷散热器而言,最终都要通过风扇的强制对流来加快热量的散发,因此一款

风扇的好坏,对整个散热效果起到了决定性的作用。配备一个性能优良的CPU

风扇也是保证整部电脑顺利运转的关键因素之一。决定风扇最终散热性能的因素

很多,主要包括风量、转速、噪音、使用寿命长短、采用何种扇叶轴承等。

风量

风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺

来计算,单位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的

风量单位是CFM(约为0.028立方米/分钟)50x50x10mm CPU风扇一般会达到10

CFM60x60x25mm风扇通常能达到20-30CFM

在散热片材质相同的情况下,风量是衡量风冷散热器散热能力的最重要的指

标。显然,风量越大的散热器其散热能力也越高。这是因为空气的热容比率是一

定的,更大的风量,也就是单位时间内更多的空气能带走更多的热量。当然,同

样风量的情况下散热效果和风的流动方式有关。

风量和风压

风量和风压是两个相对的概念。一般来说,在厂商节约成本的考量下,要设

计风扇的风量大,就要牺牲一些风压。如果风扇可以带动大量的空气流动,但风

压小,风就吹不到散热器的底部(这就是为什么一些风扇转速很高,风量很大,

但就是散热效果不好的原因),相反地,风压大则往往意味着风量就小,没有足

够的冷空气与散热片进行热交换,也会造成散热效果不好。

一般铝质鳍片的散热片要求风扇的风压足够大,而铜质鳍片的散热片则要求

风扇的风量足够大;鳍片较密的散热片相比鳍片较疏的散热片,需要更大风压的

风扇,否则空气在鳍片间流动不畅,散热效果会大打折扣。所以说不同的散热器,

厂商会根据需要配合适当风量、风压的风扇,而并不是单一追求大风量或者高风

压的风扇。

风扇转速

风扇转速是指风扇扇叶每分钟旋转的次数,单位是rpm。风扇转速由电机内

线圈的匝数、工作电压、风扇扇叶的数量、倾角、高度、直径和轴承系统共同决

定。转速和风扇质量没有必然的联系。风扇的转速可以通过内部的转速信号进行

测量,也可以通过外部进行测量(外部测量是用其它仪器看风扇转的有多快,内

部测量则直接可以到BIOS里看,也可以通过软件看。内部测量相对来说误差大

一些)

随着应用情况与环境温度的变化,有时需要不同转速风扇来满足需求。一些

厂商特意设计出可调节风扇转速的散热器,分手动和自动两种。手动的主要是让

用户可以在冬天使用低转速获得低噪音,夏天时使用高转速获得好的散热效果。

自动类调温散热器一般带有一个温控感应器,能够根据当前的工作温度(如散热

片的温度)自动控制风扇的转速,温度高则提高转速,温度低则降低转速,以达

到一个动态的平衡,从而让风噪与散热效果保持一个最佳的结合点。

风扇噪音

除了散热效果之外,风扇的工作噪音也是人们普遍关注的问题。风扇噪音是

风扇工作时产生杂音的大小,受多方面因素影响,单位为分贝(dB)测量风扇的

噪声时需要在噪声小于17dB的消音室中进行,距离风扇一米,并沿风扇转轴的

方向对准风扇的进气口,采用A加权的方式进行测量。风扇噪声的频谱特性也很

重要,因此还需要用频谱仪记录风扇的噪声频率分布情况,一般要求风扇的噪声

要尽量的小,而且不能存在异音。

风扇噪音与摩擦力、空气流动有关。风扇转速越高、风量越大,造成的噪音

也会越大,另外风扇自身的震动也是不可忽视的因素。当然高品质的风扇的自身

震动会很小,但前面两个者却是难以克服的。要解决这个问题,我们可以尝试使

用尺寸较大的风扇。应在在风量相同的情况下,大风扇在较低转速时的工作噪声

要小于小风扇在高转速时的工作噪声。另外一个我们容易忽略的因素是风扇的轴

承。由于风扇高速转动时转轴和轴承之间要摩擦碰撞,所以也是风扇噪声的一个

主要来源。

风扇噪音的来源有:

1.振动

假如风扇转子转动时转子的物理质心与转轴惯性中心不在同一轴上,便会造

成转子的不平衡。转子的物理质心与转轴惯性中心的最近距离称为偏心距,转子

不不衡造成偏心距,当转子转动时由于离心力的作用产生一作用力于转轴支架而

形成振动,且振动经由基路径传递到机械各部份。

2.风噪

风扇工作时,由于叶片周期性地承受出口不均匀气流的脉动力作用,产生噪

声;另一方面,由于叶片本身及叶片上压力的不均匀分布,转动时对周围气体及

零件的扰动也构成旋转噪声;此外由于气体流经叶片时产生湍流附层面、旋涡及

旋涡脱离,引起叶片上压力分布的脉动而产生涡流噪声。这三种原因所引起的噪

音可以综合性地称为“切风噪音”,一般风量风压大的风扇,其切风噪声也较大。

3.异音

风噪听起来只有单纯的风声,而异音则不同,风扇运转时,除风声外,若还

有其它声音发出,即可判断风扇出现了异音。异音可能因轴承内有异物或变形,

以及组装不当而出现碰撞,或电机绕组缠绕不均,造成松脱,都可能产生异音。

风扇的使用寿命

风扇的使用寿命是指散热器产品正常工作的无故障工作时间,优质产品的使

用寿命一般都能达到几万小时。在价格和性能差不多的情况下,选择使用寿命长

的产品显然更能保护我们的投资。风扇的寿命由:电机寿命、使用环境、电力供

应等各方面因素所组成。

散热风扇的送风形式

轴流风机

最广泛的形式就是用轴流风机向下吹风,之所以这么流行是因为综合效果好

且成本低廉。此外,还有将轴流风机的方向反过来,变成向上抽风的形式,这种

方式最近似乎变得越来越常见。

两种送风形式的差别在于气流形式的不同,鼓风时产生的是紊流,风压大但

容易受到阻力损失;抽风时产生的是层流,风压小但气流稳定。理论上说,紊流

的换热效率比层流大得多,因此才成为主流设计形式。但是气流的运动与散热片

也有直接关系。在某些散热片设计中(比如过于紧密的鳍片)气流受散热片阻碍

非常大,此时采用抽风可能会有更好的效果。至于采用侧面鼓风的设计,通常不

会和顶部鼓风的效果有什么差别。而比较有效的改进方法是建立CPU专用的散热

风道,这样便不会受到CPU附近热空气的影响,相当于降低了环境温度。

轴流风机虽然应用广泛,但是也存在固有的缺陷。轴流风机受电机位置的阻

挡,气流不能流畅通过鼓风区域的中部,这称为“死区”而在典型的散热片上,

恰恰中部鳍片的温度最高。由于存在这种矛盾,采用轴流风机时,散热片的散热

效果并不充分。

离心风机

离心风机是与轴流风机完全不同鼓风形式,也逐渐开始使用在CPU散热当

中,通常被电脑用户称为“涡轮风扇”。这种风扇的优越之处在于很好地解决了

“死区”问题。离心风扇与传统风扇的不同之处是其叶片旋转是在垂直的平面内

进行的,进风口位于风扇的侧面。散热器底面接收到的气流分布较均匀。离心风

机的鼓风方向上没有障碍物,所以在各个位置都有同样的气流。同时它的风压和

风量的调节范围也更大,转速控制的效果更好。负面的影响和大功率轴流风机一

样——价格高、噪音大。

其他改进风道的设计

另外一种解决风力盲区的办法是改变风扇的出风方向。传统的散热器安装方

式是气流朝下,即垂直于CPU。改进风道设计之后,风扇改为侧向吹风,让气流

的方向平行于CPU。侧向吹风的首要好处是彻底解决风力盲区,因为气流是平行

通过散热鳍片的,气流截面的四条边上的气流速度最快,CPU的发热点正好位

于一条边上。这样CPU 散热底座吸收的热量可以被及时带走。另外一个好处是

没有反弹的风压(通常向下吹风时,一部分气流冲至散热底面并反弹,这会影响

散热器内的气流运动方向,使的热交换的效率受到损失)。热交换效率要高于向

下吹风。

风扇的叶片

散热器风扇的效能主要取决于:风扇扇叶直径和轴向长度;风扇的转速;

叶的形状等因素。CPU风扇的叶片通常在6片到12片之间。一般说来,叶片数

量较少的容易产生较大的风压,但运转噪音也较大;而叶片数量较多的则恰恰相

反。

叶片形状

有镰刀型、梯形和AVC专利的折缘型等。相对来说,镰刀型扇叶运转时比较

平稳安静,但所能产生的风压也较小;梯形扇叶容易产生较大风压,但噪音也较

大。折缘型是最优秀的设计,在保持低噪音的同时能产生较大的风压,但目前仅

用于AVC自己的产品中。目前见得较多的是镰刀型的设计。

设计优秀的扇叶,能在不高的风扇转速下产生输出较大的风量和风压,同时

也不会产生太大的风噪声。除了形状以外,叶片倾斜的角度也很重要,要配合电

机的特性和散热片的需要来设计。否则,单纯追求叶片倾角大,可能会出现风噪

大风力小的情况。

涡轮风扇:涡轮风扇可以消除立轴式风扇轴心部分的风力盲区,使风力更加

均匀,散热效率更高。它采用了Hyper flow(流体力学设计),将原来的封闭式

侧壁改成了百叶窗型的侧开口开放式设计,因此进风方式也随之改变,从单独的

上进风变为上进风与侧进风并行。根据空气动力学的原理,上进风的方式是空气

在旋转的风扇扇叶的驱使下,使其自上而下成垂直流动,此时在风扇的中心形成

一个空气压力相对较低的地区,风扇周围的空气于是向气压较低的风扇中心流

动,在流动的过程中,气流在扇叶旋转的作用下发生偏移,从而形成了一个类似

龙卷风的涡旋,随着涡旋的增强,周围的空气被迅速的吸过来。这样的设计,有

效地防止了风扇的末端和扇框之间形成狭窄的气流扰动区和空气湍流产生的风

噪声。

其实每个风扇厂商都有自己的扇叶设计方法,每种设计方法也都是经过大量的实

验数据所得,可以说复杂程度非常之高。对于具体的技术问题本文就不再深入讨

论。

风扇的轴承

好的风扇,除了其风量大和风压高之外,自身的可靠性是相当的重要,其中,

风扇使用的轴承起着非常重要的作用。一般高速风扇使用滚珠轴承(ball

bearing),而低速风扇则使用成本较低廉的自润轴承(sleeve bearing)。每个风

扇都需要两个轴承,一些风扇上标着"BS"的字样,是单滚珠式轴承,BS的意思

"1 ball + 1 sleeve",依然带有自润轴承的成分。比BS更高级的是双滚珠式

轴承,即Two Balls。下面将对各种轴承形式加以说明。

含油轴承

含油轴承是使用滑动摩擦的套筒轴承,使用润滑油作为润滑剂和减阻剂,

期使用时运行噪音低,制造成本也低,但是这种轴承磨损严重,寿命较滚珠轴承

有很大差距。而且这种轴承使用时间一长,由于油封的原因(电脑散热器产品都

不可能使用高档油封,一般也就是普通的纸油封),润滑油会逐渐挥发,而且灰

尘也会进入轴承,从而引起风扇转速变慢,噪音增大等问题,严重的还会因为轴

承磨损造成风扇偏心引发剧烈震动。出现这些现象,要么打开油封加油,要么就

只有淘汰另购新风扇。

滚珠轴承

含油轴承由于使用周期较短,轴承内部的油控直接影响运转时噪音大小,

以越来越被各知名大厂所摒弃。双滚珠轴承现在被业界广泛看好,成为高品质散

热器风扇的首选,运转稳定性无出其右,但价格也较高。而作为物美价廉的选择,

各大厂商的折衷方案就是采用单滚珠轴承。下载 (29.67 KB)2009-4-22 10:40

单滚珠轴承

单滚珠轴承是对传统油封轴承的改进。它的转子与定子之间用滚珠进行润

滑,并配以润滑油。它克服了油封轴承寿命短,运行不稳定的毛病,而成本上升

极为有限。单滚珠轴承吸收了油封轴承和双滚珠轴承的优点。将轴承的使用寿命

提升到了40,000小时,加入滚珠之后,运行噪声有所增大,但仍小于双滚珠轴

承。

双滚珠轴承

双滚珠轴承属于比较高档的轴承。轴承中有数颗微小钢珠围绕轴心,当扇页

或轴心转动时,钢珠即跟着转动。因为都是球体,所以摩擦力较小,且不存在漏

油的问题。双滚珠风扇优点是寿命较长,大约在50000 ~100000小时;抗老化性

能好,适合转速较高的风扇。双滚珠轴承的缺点是制造成本高,并且在同样的转

速水平下噪音最大(因为滚珠轴承摩擦点增加了2 )。双滚珠风轴承和液压轴

承的封闭性较好,尤其是双滚珠轴承。双滚珠轴承被整个嵌在风扇中,转动部分

没有与外界直接接触。在密封的环境中,轴承的工作环境比较稳定。因此5000

转级别的大口径风扇几乎都使用双滚珠轴承。而液压轴承由于具备独特的还回式

油路,所以润滑油泄露的可能性较小。

来福轴承

来福轴承(Rifle Bearing)技术的代表厂商是CoolerMasterCM已经将旗下

的大部分传统油封轴承风扇升级到来福轴承。作为传统油封轴承的改进,来福轴

承采用耐磨材料制成高含油中空轴承,减小了轴承与轴芯之间摩擦力,来福轴承

还带有反向螺旋槽及挡油槽的轴芯,在风扇运转时含油将形成反向回游,从而避

免含油流失,因此提升了轴承寿命。来福轴承风扇通过采用以上结构及零件,使

得含油及保油能力大幅提升,并降低了噪音。

HYPRO轴承

Hypro 轴承之名来源于HY(Hydrodynamic wave,流体力学波)PRO(Oil

protection system,油护系统),系知名散热器及风扇设计制造厂家ADDA的专

利产品,同是在传统含油轴承基础之上进行多项改进而成。Hypro与液压轴承可

谓殊途同归,两种设计各自采用了一些独到的改进措施,但精髓同为循环油路系

统,各方面的表现也基本相当。通常产品寿命可达50000小时以上。

液压轴承

液压轴承是由AVC首创的技术。同样,它也是在油封轴承的基础上改进而来

的。液压轴承拥有比油封轴承更大的储油空间,并有独特的环回式供油回路。

压轴承风扇的工作噪音又明显的降低,使用寿命也非常长,可达到40000小时。

但并非所有的AVC散热器都采用液压轴承风扇。可见液压轴承实质上仍然是一种

油封轴承。但这种经过了改进,寿命比普通油封轴承大大延长了,并且继承了油

封轴承的优点——运行噪音小。

纳米轴承

富士康在其产品中首先引入了纳米轴承。传统油封轴承风扇在使用过程中磨

损比较严重,长时间使用时的可靠性较低。纳米轴承有效的克服了这个问题:

瓷轴承技术采用了纳米级高分子材料与特殊添加剂充分融合,轴承核心全面采用

纳米级的氧化锆粉,使用冲模及烧结工艺制成,晶体颗粒由过去的60um下降到

0.3um,具有坚固、光滑、耐磨等特性。

纳米陶瓷轴承(NCB)具有很强的耐高温能力,不易挥发,这大大延长了风扇的使

用寿命,纳米轴承的性质与陶瓷类似,越磨越光滑。据测试,采用纳米陶瓷轴承

(NCB)的风扇平均使用寿命都在15万小时以上。

含油轴承 Sleeve Bearing

含油轴承 Sleeve Bearing:这类轴承可以说是现在市场上比较老的轴承技

术了,不过由于成本低廉,在技术上容易实现,不少产品包括知名品牌都还在继

续使用当中,其优点是初期使用时安静,噪音低,价格便宜;不过一般到了后期

由于内部油料的挥发和灰尘的进入,对轴承造成严重的磨损,从而导致转速减缓,

噪音增大,平均寿命只有800015000小。

来福轴承 Rifle Bearin

来福轴承 Rifle Bearing: CoolerMaster所研发的来福轴承技术采用带

有反向螺旋槽及挡油槽的轴芯,在风扇运转时含油将形成反向回游,从而避免含

油流失,做为含油轴承的改经型,来福轴承有效提升了轴承的使用寿命。而从成

本上和含油轴承比起来也没有多大的提升,可以说是低端产品中间一个比较不错

的经济型解决方式。

滚珠轴承 BALL Bearing

滚珠轴承 BALL Bearing:和含油轴承比较起来,滚珠轴承改变了轴承的摩擦

方式,这一方式更为有效的降低了轴承面之间的摩擦现象,有效提升了风扇轴承

的使用寿命,也因此将散热器的使用寿命延长。所带来的缺点就是工艺更为复杂,

导致成本提升,同时也带来更高的工作噪音。

双滚珠轴承 DUAL BALL Bearing

双滚珠轴承 DUAL BALL Bearing:滚珠轴承里还包括双滚珠轴承,和单滚珠

轴承相比,双滚珠轴承的使用寿命可以达到50000小时以上,稳定性很不错,

是所带来的是更高的工作噪音和制造成本。

磁悬浮液压轴承 HYDRAULIC Bearing

磁悬浮液压轴承 HYDRAULIC Bearing:AVC推出的磁悬浮液压轴承技术利

用磁力支持悬浮作用再加上与之配合的特殊油膜润滑,有效的解决了风扇的长寿

命和低噪音两者之间的矛盾。

纳米轴承 NACOOL Bearing

轴承 NACOOL Bearing:FOXCONN所推出,采用纳米复合材料所制成的

新型轴承材料在耐高温、耐磨损方面有不错的表现,这种轴承能够有效提高风扇

轴承的抗磨损能力,并且在复杂环境下使用也不会受到过多的影响,使用寿命较

普通轴承提高到120000150000小时以上。

市场上采用这些轴承技术的散热器产品各自之间都存在有不同的差异,最为

简单的就是价格方面的区别,了解这些区别可以帮助我们在选购散热器时根据自

己的需求来决定。