2024年3月10日发(作者:)

a

1

=1,a

n+1

=f(a

n

),求S(x)

则S(x)=

(a

1

x+

n=2

a

n

x

n

)

+∞

+∞

=a

1

+

n=2

a

n

n∗x

n−1

+∞

=a

1

+

n=1

a

n+1

(n+1)∗x

n

柯西乘法公式:

a

1

+

+∞

=

n=1

f(a

n

)∗

(n+1)∗x

n

f(a

n

)∗(n+1)如果能写成a

n

+na

n

+g(n)的形式(其中g(n)x

n

为某函数的幂级数展开

+∞

则=a

1

+

n=1

(a

n

+

na

n

+g(n))∗x

n

+∞+∞+∞

=a

1

+

n=1

(a

n

)∗

x

n

+

n=1

(na

n

)∗

x

n

+

n=1

(g(n))∗

x

n

+∞

=a

1

+S(x)+xS

(x)+

n=1

(g(n))∗

x

n

n

1111

S(x)=

1

−(1+

2

+

3

+

4

+……+

n

)x

n

111

观察x

n

的系数c

n

,−

(1),−(1+

2

),−(1+

2

+

3

)……

x

2

x

3

x

4

x

n

ln(1−x)=−(x+

2

+

3

+

4

+……+

n

)

1

1−x=1+x+x

2

+……+x

n

ln(1−x)

S(x)=1−x