2024年3月10日发(作者:)
a
1
=1,a
n+1
=f(a
n
),求S(x)
则S(x)=
(a
1
x+
n=2
a
n
x
n
)
′
∑
+∞
′
∑
+∞
=a
1
+
n=2
a
n
∗
n∗x
n−1
∑
+∞
=a
1
+
n=1
a
n+1
∗
(n+1)∗x
n
柯西乘法公式:
a
1
+
∑
+∞
=
n=1
f(a
n
)∗
(n+1)∗x
n
f(a
n
)∗(n+1)如果能写成a
n
+na
n
+g(n)的形式(其中g(n)x
n
为某函数的幂级数展开
+∞
则=a
1
+
∑
n=1
(a
n
+
na
n
+g(n))∗x
n
+∞+∞+∞
=a
1
+
∑
n=1
(a
n
)∗
x
n
+
∑
n=1
(na
n
)∗
x
n
+
∑
n=1
(g(n))∗
x
n
+∞
=a
1
+S(x)+xS
′
(x)+
∑
n=1
(g(n))∗
x
n
n
1111
S(x)=
∑
1
−(1+
2
+
3
+
4
+……+
n
)x
n
111
观察x
n
的系数c
n
,−
(1),−(1+
2
),−(1+
2
+
3
)……
x
2
x
3
x
4
x
n
ln(1−x)=−(x+
2
+
3
+
4
+……+
n
)
1
1−x=1+x+x
2
+……+x
n
ln(1−x)
S(x)=1−x
发布评论