2024年4月20日发(作者:)

数值分析作业

第二章

1、用Gauss消元法求解下列方程组:

2x

1

-x

2

+3x

3

=1,

(1) 4x

1

+2x

2

+5x

3

=4,

x

1

+2x

2

=7;

(2) 解:

A=[2 -1 3 1;4 2 5 4;1 2 0 7]

n=size(A,1);x=zeros(n,1);flag=1;

% 消元过程

for k=1:n-1

for i=k+1:n

if abs(A(k,k))>eps

A(i,k+1:n+1)=

A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k);

else

flag=0;

return

end

end

end

% 回代过程

if abs(A(n,n))>eps

x(n)=A(n,n+1)/A(n,n);

else

flag=0;

return

end

for i=n-1:-1:1

x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i);

end

return

x

A = 2 -1 3 1

4 2 5 4

1 2 0 7

x = 9

-1

-6

11x

1

-3x

2

-2x

3

=3,

(2) -23x

1

+11x

2

+1x

3

=0,

x

1

+2x

2

+2x

3

=-1;

(2) 解:

A=[11 -3 -2 3;-23 11 1 0;1 2 2 -1]

n=size(A,1);x=zeros(n,1);flag=1;

% 消元过程

for k=1:n-1

for i=k+1:n

if abs(A(k,k))>eps

A(i,k+1:n+1)=

A(i,k+1:n+1)-A(k,k+1:n+1)*A(i,k)/A(k,k);

else

flag=0;

return

end

end

end

% 回代过程

if abs(A(n,n))>eps

x(n)=A(n,n+1)/A(n,n);

else

flag=0;

return

end

for i=n-1:-1:1

x(i)=(A(i,n+1)-A(i,i+1:n)*x(i+1:n))/A(i,i);

end

return

x

A = 11 -3 -2 3

-23 11 1 0

1 2 2 -1

x = 0.2124

0.5492

-1.1554

4、用Cholesky分解法解方程组

3 2 3 x

1

5

2 2 0 x

2

3

3 0 12 x

3

7