2024年6月11日发(作者:)

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Asynchronous Machine

Model the dynamics of three-phase asynchronous machine, also known as induction machine

Library

Machines

Description

The Asynchronous Machine block operates in either generator or motor mode. The mode of operation is dictated by the sign of the mechanical

torque:

If Tm is positive, the machine acts as a motor.

If Tm is negative, the machine acts as a generator.

The electrical part of the machine is represented by a fourth-order state-space model and the mechanical part by a second-order system. All

electrical variables and parameters are referred to the stator. This is indicated by the prime signs in the machine equations given below. All stator

and rotor quantities are in the arbitrary two-axis reference frame (dq frame). The subscripts used are defined as follows:

SubscriptDefinition

d

q

r

s

l

m

d axis quantity

q axis quantity

Rotor quantity

Stator quantity

Leakage inductance

Magnetizing inductance

Electrical System

Mechanical System

The Asynchronous Machine block parameters are defined as follows (all quantities are referred to the stator):

sls

1 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Parameter

R, L

R', L'

L

L, L'

V, i

V', i'

V, i

V', i'

ϕ, ϕ

ϕ', ϕ'

ω

Θ

p

ω

Θ

T

T

J

H

F

Definition

Stator resistance and leakage inductance

Rotor resistance and leakage inductance

Magnetizing inductance

Total stator and rotor inductances

q axis stator voltage and current

q axis rotor voltage and current

d axis stator voltage and current

d axis rotor voltage and current

Stator q and d axis fluxes

Rotor q and d axis fluxes

Angular velocity of the rotor

Rotor angular position

Number of pole pairs

Electrical angular velocity (ω x p)

Electrical rotor angular position (Θ x p)

Electromagnetic torque

Shaft mechanical torque

Combined rotor and load inertia coefficient. Set to infinite to simulate locked rotor.

Combined rotor and load inertia constant. Set to infinite to simulate locked rotor.

Combined rotor and load viscous friction coefficient

Dialog Box and Parameters

You can choose between two Asynchronous Machine blocks to specify the electrical and mechanical parameters of the model, by using the pu

Units dialog box or the SI dialog box. Both blocks are modeling the same asynchronous machine model. Depending on the dialog box you

®

choose to use, SimPowerSystems™ software automatically converts the parameters you enter into per unit parameters. The Simulink model of

the Asynchronous Machine block uses pu parameters.

Configuration Tab

2 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Preset model

Provides a set of predetermined electrical and mechanical parameters for various asynchronous machine ratings of power (HP),

phase-to-phase voltage (V), frequency (Hz), and rated speed (rpm).

Select one of the preset models to load the corresponding electrical and mechanical parameters in the entries of the dialog box. Note that

the preset models do not include predetermined saturation parameters. Select No if you do not want to use a preset model, or if you want to

modify some of the parameters of a preset model, as described below.

When you select a preset model, the electrical and mechanical parameters in the Parameters tab of the dialog box become unmodifiable

(grayed out). To start from a given preset model and then modify machine parameters, you have to do the following:

the desired preset model to initialize the parameters.

the Preset model parameter value to No. This will not change the machine parameters. By doing so, you just break the

connection with the particular preset model.

the machine parameters as you wish, then click Apply.

Mechanical input

Allows you to select either the torque applied to the shaft or the rotor speed as the Simulink signal applied to the block's input.

Select Torque Tm to specify a torque input, in N.m or in pu, and change labeling of the block's input to Tm. The machine speed is

determined by the machine Inertia J (or inertia constant H for the pu machine) and by the difference between the applied mechanical torque

Tm and the internal electromagnetic torque Te. The sign convention for the mechanical torque is the following: when the speed is positive,

a positive torque signal indicates motor mode and a negative signal indicates generator mode.

Select Speed w to specify a speed input, in rad/s or in pu, and change labeling of the block's input to w. The machine speed is imposed

and the mechanical part of the model (Inertia J) is ignored. Using the speed as the mechanical input allows modeling a mechanical

coupling between two machines and interfacing with SimMechanics™ and SimDriveline™ models.

The next figure indicates how to model a stiff shaft interconnection in a motor-generator set when friction torque is ignored in machine 2.

The speed output of machine 1 (motor) is connected to the speed input of machine 2 (generator), while machine 2 electromagnetic torque

output Te is applied to the mechanical torque input Tm of machine 1. The Kw factor takes into account speed units of both machines (pu or

rad/s) and gear box ratio w2/w1. The KT factor takes into account torque units of both machines (pu or N.m) and machine ratings. Also, as

the inertia J2 is ignored in machine 2, J2 referred to machine 1 speed must be added to machine 1 inertia J1.

3 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Rotor type

Specifies the branching for the rotor windings.

Reference frame

Specifies the reference frame that is used to convert input voltages (abc reference frame) to the dq reference frame, and output currents

(dq reference frame) to the abc reference frame. You can choose among the following reference frame transformations:

Rotor (Park transformation)

Stationary (Clarke or αβ transformation)

Synchronous

The following relationships describe the abc-to-dq reference frame transformations applied to the Asynchronous Machine phase-to-phase

voltages.

In the preceding equations, Θ is the angular position of the reference frame, while is the difference between the position of the

reference frame and the position (electrical) of the rotor. Because the machine windings are connected in a three-wire Y configuration,

there is no homopolar (0) component. This also justifies the fact that two line-to-line input voltages are used inside the model instead of

three line-to-neutral voltages. The following relationships describe the dq-to-abc reference frame transformations applied to the

Asynchronous Machine phase currents.

The following table shows the values taken by Θ and β in each reference frame (Θ

e

is the position of the synchronously rotating reference

frame).

Reference FrameΘ

Rotor

Stationary

Synchronous

Θ

r

0

Θ

e

β

0

r

Θ

e

- Θ

r

The choice of reference frame affects the waveforms of all dq variables. It also affects the simulation speed and in certain cases the

accuracy of the results. The following guidelines are suggested in [1]:

Use the stationary reference frame if the stator voltages are either unbalanced or discontinuous and the rotor voltages are balanced

(or 0).

Use the rotor reference frame if the rotor voltages are either unbalanced or discontinuous and the stator voltages are balanced.

Use either the stationary or synchronous reference frames if all voltages are balanced and continuous.

Mask units

4 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Specifies the units of the electrical and mechanical parameters of the model. This parameter is not modifiable; it is provided for information

purposes only.

Parameters Tab

Nominal power, voltage (line-line), and frequency

The nominal apparent power Pn (VA), RMS line-to-line voltage Vn (V), and frequency fn (Hz).

Stator resistance and inductance

The stator resistance Rs (Ω or pu) and leakage inductance Lls (H or pu).

Rotor resistance and inductance

The rotor resistance Rr' (Ω or pu) and leakage inductance Llr' (H or pu), both referred to the stator.

Mutual inductance

The magnetizing inductance Lm (H or pu).

Inertia constant, friction factor, and pole pairs

2

For the SI units dialog box: the combined machine and load inertia coefficient J (kg.m), combined viscous friction coefficient F (N.m.s),

and pole pairs p. The friction torque Tf is proportional to the rotor speed ω (Tf = F.w).

For the pu units dialog box: the inertia constant H (s), combined viscous friction coefficient F (pu), and pole pairs p.

Initial conditions

Specifies the initial slip s, electrical angle Θe (degrees), stator current magnitude (A or pu), and phase angles (degrees):

[slip, th, i

as

, i

bs

, i

cs

, phase

as

, phase

bs

, phase

cs

]

For the wound-rotor machine, you can also specify optional initial values for the rotor current magnitude (A or pu), and phase angles

(degrees):

[slip, th, i

as

, i

bs

, i

cs

, phase

as

, phase

bs

, phase

cs

, i

ar

, i

br

, i

cr

,

phase

ar

, phase

br

, phase

cr

]

For the squirrel cage machine, the initial conditions can be computed by the load flow utility in the Powergui block.

Simulate saturation

Specifies whether magnetic saturation of rotor and stator iron is simulated or not.

Saturation parameters

Specifies the no-load saturation curve parameters. Magnetic saturation of stator and rotor iron (saturation of the mutual flux) is modeled by

a nonlinear function (in this case a polynomial) using points of the no-load saturation curve. You must enter a 2-by-n matrix, where n is the

number of points taken from the saturation curve. The first row of this matrix contains the values of stator currents, while the second row

contains values of corresponding terminal voltages (stator voltages). The first point (first column of the matrix) must correspond to the point

where the effect of saturation begins.

5 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

You must select the Simulate saturation check box to simulate saturation. If the Simulate saturation is not selected, the relationship

between the stator current and the stator voltage is linear.

Advanced Tab

Sample time (-1 for inherited)

Specifies the sample time used by the block. To inherit the sample time specified in the Powergui block, set this parameter to -1.

Inputs and Outputs

Tm

The Simulink input of the block is the mechanical torque at the machine's shaft. When the input is a positive Simulink signal, the

asynchronous machine behaves as a motor. When the input is a negative signal, the asynchronous machine behaves as a generator.

When you use the SI parameters mask, the input is a signal in N.m, otherwise it is in pu.

w

The alternative block input (depending on the value of the

Mechanical input

parameter) is the machine speed, in rad/s.

m

The Simulink output of the block is a vector containing 21 signals. You can demultiplex these signals by using the Bus Selector block

provided in the Simulink library. Depending on the type of mask you use, the units are in SI, or in pu.

SignalDefinition

1

2

3

4

5

6

7

8

Rotor current ir_a

Rotor current ir_b

Rotor current ir_c

Rotor current iq

Rotor current id

Rotor flux phir_q

Rotor flux phir_d

Rotor voltage Vr_q

Units

A or pu

A or pu

A or pu

A or pu

A or pu

V.s or pu

V.s or pu

V or pu

Symbol

i'

ra

i'

rb

i'

rc

i'

qr

i'

dr

ϕ'

qr

ϕ'

dr

v'

qr

6 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

SignalDefinition

9

10

11

12

13

14

15

16

17

18

19

20

21

Rotor voltage Vr_d

Stator current is_a

Stator current is_b

Stator current is_c

Stator current is_q

Stator current is_d

Stator flux phis_q

Stator flux phis_d

Stator voltage vs_q

Stator voltage vs_d

Rotor speed

Electromagnetic torque Te

Rotor angle thetam

Units

V or pu

A or pu

A or pu

A or pu

A or pu

A or pu

V.s or pu

V.s or pu

V or pu

V or pu

rad/s

N.m or pu

rad

Symbol

v'

d

i

sa

i

sb

i

sc

i

qs

i

ds

ϕ

qs

ϕ

ds

v

qs

v

ds

ω

m

T

e

Θ

m

The stator terminals of the Asynchronous Machine block are identified by the A, B, and C letters. The rotor terminals are identified by the a, b,

and c letters. Note that the neutral connections of the stator and rotor windings are not available; three-wire Y connections are assumed.

Limitations

Asynchronous Machine block does not include a representation of the saturation of leakage fluxes. You must be careful when you

connect ideal sources to the machine's stator. If you choose to supply the stator via a three-phase Y-connected infinite voltage source, you

must use three sources connected in Y. However, if you choose to simulate a delta source connection, you must use only two sources

connected in series.

2.

When you use Asynchronous Machine blocks in discrete systems, you might have to use a small parasitic resistive load, connected at the

machine terminals, in order to avoid numerical oscillations. Large sample times require larger loads. The minimum resistive load is

proportional to the sample time. As a rule of thumb, remember that with a 25 μs time step on a 60 Hz system, the minimum load is

approximately 2.5% of the machine nominal power. For example, a 200 MVA asynchronous machine in a power system discretized with a

50 μs sample time requires approximately 5% of resistive load or 10 MW. If the sample time is reduced to 20 μs, a resistive load of 4 MW

should be sufficient.

Examples

Example 1: Use of the Asynchronous Machine Block in Motor Mode

The power_pwm demo illustrates the use of the Asynchronous Machine block in motor mode. It consists of an asynchronous machine in an

open-loop speed control system.

The machine's rotor is short-circuited, and the stator is fed by a PWM inverter, built with Simulink blocks and interfaced to the Asynchronous

Machine block through the Controlled Voltage Source block. The inverter uses sinusoidal pulse-width modulation, which is described in [2]. The

base frequency of the sinusoidal reference wave is set at 60 Hz and the triangular carrier wave's frequency is set at 1980 Hz. This corresponds

to a frequency modulation factor m

f

of 33 (60 Hz x 33 = 1980). It is recommended in [2] that m

f

be an odd multiple of three and that the value be

as high as possible.

7 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

The 3 HP machine is connected to a constant load of nominal value (11.9 N.m). It is started and reaches the set point speed of 1.0 pu at t = 0.9

second.

The parameters of the machine are those found in the SI Units dialog box above, except for the stator leakage inductance, which is set to twice

its normal value. This is done to simulate a smoothing inductor placed between the inverter and the machine. Also, the stationary reference

frame was used to obtain the results shown.

Open the power_pwm demo. Note in the simulation parameters that a small relative tolerance is required because of the high switching rate of

the inverter.

Run the simulation and observe the machine's speed and torque.

The first graph shows the machine's speed going from 0 to 1725 rpm (1.0 pu). The second graph shows the electromagnetic torque developed

by the machine. Because the stator is fed by a PWM inverter, a noisy torque is observed.

However, this noise is not visible in the speed because it is filtered out by the machine's inertia, but it can also be seen in the stator and rotor

currents, which are observed next.

8 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Finally, look at the output of the PWM inverter. Because nothing of interest can be seen at the simulation time scale, the graph concentrates on

the last moments of the simulation.

Example 2: Effect of Saturation of the Asynchronous Machine Block

The power_asm_sat demo illustrates the effect of saturation of the Asynchronous Machine block.

Two identical three-phase motors (50 HP, 460 V, 1800 rpm) are simulated with and without saturation, to observe the saturation effects on the

stator currents. Two different simulations are realized in the demo.

9 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

The first simulation, is the no-load steady-state test. The table below contains the values of the Saturation Parameters and the measurements

obtained by simulating different operating points on the saturated motor (no-load and in steady-state).

Saturation Parameters

Vsat (Vrms L-L)

-

230

-

-

322

-

-

414

-

-

460

-

-

506

-

Isat (peak A)

-

14.04

-

-

27.81

-

-

53.79

-

-

72.69

-

-

97.98

-

Measurements

Vrms L-LIs_A (peak A)

120

230

250

300

322

351

382

414

426

449

460

472

488

506

519

7.322

14.03

16.86

24.04

28.39

35.22

43.83

54.21

58.58

67.94

73.01

79.12

88.43

100.9

111.6

10 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Saturation Parameters

Vsat (Vrms L-L)

-

-

552

-

-

598

-

-

644

-

-

-

690

Isat (peak A)

-

-

148.68

-

-

215.74

-

-

302.98

-

-

-

428.78

Measurements

Vrms L-LIs_A (peak A)

535

546

552

569

581

598

620

633

644

659

672

681

690

126.9

139.1

146.3

169.1

187.4

216.5

259.6

287.8

313.2

350

383.7

407.9

432.9

The graph below illustrates these results and shows the accuracy of the saturation model. As you can see, the measured operating points fit well

the curve that is plotted from the Saturation Parameters data.

11 of 122014/5/23 13:40

Asynchronous Machine :: Blocks (SimPowerSystems™)jar:file:///D:/Program%20Files/MATLAB/R2010a/help/

Running the simulation with a blocked rotor or with many different values of load torque will allow the observation of other effects of saturation on

the stator currents.

References

[1] Krause, P.C., O. Wasynczuk, and S.D. Sudhoff, Analysis of Electric Machinery, IEEE Press, 2002.

[2] Mohan, N., T.M. Undeland, and W.P. Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons, Inc., New York,

1995, Section8.4.1.

See Also

Powergui

Was this topic helpful?

Yes

No

© 1984-2010 The MathWorks, Inc.

Terms of Use

Patents

Trademarks

Acknowledgments

12 of 122014/5/23 13:40