2024年5月31日发(作者:)
专升本高等数学(一)-一元函数积分学(五)-2
(总分:100.12,做题时间:90分钟)
一、选择题(总题数:5,分数:10.00)
1.下列等式成立的是______
A.∫f"(x)dx=f(x)
B.
C.d∫f"(x)dx=f"(x)dx
D.d∫f"(x)dx=f"(x)dx+c
(分数:2.00)
A.
B.
C. √
D.
解析:
2.下列函数对中是同一函数的原函数的是______
(分数:2.00)
2与ln2x
2x与sin2x
C.2cos2x与cos2x √
x与arccosx
解析:
3.设F(x)是连续函数
(分数:2.00)
A.F(x)=ln(cx)(c≠0)
B.F(x)=lnx+ec
C.F(x)=ln3x+c
D.F(x)=3lnx+c √
解析:
4.∫ln(2x)dx等于______
A.2xln(2x)-2x+c
B.2xln2+lnx+c
C.xln(2x)-x+c
D.
(分数:2.00)
A.
B.
C. √
D.
解析:
的原函数,则下列结论不成立的是______
5.设∫f"(x )dx=x +c,则f(x)等于______
A.
B.
C.
D.
(分数:2.00)
A.
B. √
C.
D.
解析:
33
二、填空题(总题数:9,分数:9.00)
6.通过点(1,2)的积分曲线y=∫3x dx如的方程是 1.
(分数:1.00)
解析:y=x +1
7.设∫f(x)dx=2 +cosx+c,则f(x)= 1.
(分数:1.00)
解析:2 ln2-sinx
8.设∫f(x)dx=x +c,则∫xf(1-x )dx= 1.
(分数:1.00)
解析:
9.
(分数:1.00)
解析:
(分数:1.00)
解析:xf"(x)-f(x)+c
11.∫cot xdx= 1.
(分数:1.00)
解析:-x-cotx+c
12.
(分数:1.00)
=d 1.
2
22
x
x
3
2
= 1.
10.∫xdf"(x)= 1.
发布评论